
N
etw

ork A
ppliance, a pioneer and industry

leader in data storage technology, helps
organizations understand and m

eet
com

plex technical challenges w
ith

advanced storage solutions and global data
m

anagem
ent strategies.

TECHNICAL REPORT

SQL Server 2000 Sizing and Capacity
Planning Guidelines
Network Appliance, Inc. | Gerson Finlev | December 2004 | TR 3363

T E C H N I C A L R E P O R T

Contents

1. Introduction... 3

2. Factors Affecting SQL Server’s I/O Handling... 5
2.1. Logical I/O (Buffer Cache) and the Effect on Physical I/O... 5

2.1.1. Correlating the Buffer Cache Size with the Database Size. 8
2.2. Physical I/O and I/O Functions... 9

2.2.1. Scatter-Gather I/O... 10
2.3. Asynchronous I/O.. 10

2.3.1. Writing Database Data Pages... 11
2.3.2. Writing to File Groups .. 11
2.3.3. Automatic Checkpoints ... 12
2.3.4. Reading from Data Files ... 12

2.4. Synchronous I/O... 12
2.4.1. Writing the Transaction Log ... 13

3. Optimizing NetApp Storage for SQL Server... 13
3.1. Read-Ahead and Setting of minra.. 14
3.2. FCP or iSCSI Infrastructure Setup ... 14
3.3. Files, File Groups, and Disks ... 14
 3.3.1. Space Considerations... 15
 3.3.2..Throughput Considerations... 15

4. Sizing NetApp Storage for SQL Server.. 16
4.1. General Sizing Recommendations.. 19

4.1.1. Space Requirements for System Databases .. 19
4.1.2. User-Defined Databases... 20
4.1.3. Sizing a Volume for Space Requirements .. 22
4.1.4. Sizing a Volume for Throughput ... 22
4.1.5. Sizing Transaction Logs.. 23
4.1.6. Sizing SnapInfo Used by SnapManager for SQL Server.. 24
4.1.7. Snapshot Management
4.1.8. Space Reservation

4.2. Volume Sizing Recap... 25
4.3. Special Sizing Considerations for MSCS.. 26

5. Ongoing Capacity Planning and Monitoring .. 26
5.1. Basic Set of Counters.. 27

6. Summary .. 29

7. References and Additional Resources... 30

 2

T E C H N I C A L R E P O R T

1. Introduction

This technical report’s primary focus is database sizing guidelines for deploying SQL Server 2000
databases utilizing NetApp storage. Enterprise-level SQL Server environments require careful
planning driven by performance and reliability criteria that are the critical components for many
SQL Server implementations. Servicing user transactions and delivering consistent and
acceptable response times are critical for most applications utilizing SQL Server for storing and
retrieving data from databases. Performance degradation can only be prevented when resource
utilization is monitored and capacity planning guidelines are in place, well understood, and
implemented properly. Therefore, capacity planning guidelines are an obvious part of this
technical report.

Performance, sizing, and capacity planning guidelines are interrelated functional areas, with goals
to drive the implementation of critical SQL Server database environments. It is important to
configure a balanced system with no known performance bottlenecks even during peak loads.
Most applications utilizing SQL Server for storing and retrieving information will not push the I/O
throughput to the NetApp storage device’s limit. However, if the storage device is a limiting
performance factor, then all SQL Server operations will suffer. Having right-sized storage devices
is essential for supporting high I/O throughput with low service time. It is the important baseline
for developing capacity planning guidelines.

The focus of this technical report is storage requirements for SQL Server databases. Space
requirements are fairly easy to calculate and not really an issue, but throughput and service time
requirements are less exact and more difficult to define. The goal of this report is to educate and
to create background knowledge that will make it easier to work with administrators to size
storage correctly for both space and throughput. Correct sizing requires cooperation among all
participants and is especially difficult to attain when consolidating both SQL Server instances and
storage. Implementing new applications with SQL Server is especially challenging because I/O-
related performance requirements are often not well understood. Performance and storage
requirements depend on the workload generated by the SQL Server application, as well as on
hardware configuration and memory utilization. It is very easy to illustrate how executing the
exact same workload on the same Windows® server can result in very different physical I/O
access patterns and thereby different storage requirements.

The three test results shown in Figure 1 and Figure 2 are driven by the exact same workload
executing on the exact same system configuration. Test 1 in Figure 1 shows a read rate of
around 8MB per second and a write rate of 12MB per second; the physical I/O load changes to a
very different load and access pattern in test 3. It is even more fascinating that test 1 has almost
saturated the filer (Figure 2) compared to test 3, in which the filer resources were not highly
utilized. The Windows server’s processor resources (four CPUs) were always 99% busy; these
results will be discussed in detail in section 2. This report will discuss the throughput performance
and explain the reason why it is not possible to provide exact information about the right storage-
sizing guidance for throughput. This report will focus on the background knowledge that will make
an implementation a performance success.

Figure 1 illustrates the results from executing the same application workload, resulting in very
different physical I/O rate.

 3

T E C H N I C A L R E P O R T

Average Read & Write

0

2000

4000

6000

8000

10000

12000

14000

1 2 3

Test set

K
B avg.Read/s

avg.Write/s

Figure 1) Average physical I/O.

Figure 2 illustrates the resulting filer utilization from executing the application workloads shown in
Figure 1.

Filer Utilization

0

10

20

30

40

50

60

70

80

1 2 3

Test Set

Pe
rc

en
t

F.%CPU
F.%Disk

Figure 2) Average filer resource utilization.

The physical I/O rate appears to be related to the buffer cache hit ratio. If the hit ratio can be
increased, then the physical I/O might decrease.

Developing sizing guidelines is a larger scale effort, and several factors have to be considered
before arriving at a conclusion. This report allows for the fact that each customer case may be a
unique scenario and need a customized analysis. However, considering a general approach, this
report considers involving the following three related topics:

 Factors that affect SQL Server 2000 I/O access patterns
 Factors that effect NetApp storage device handling of I/O requests
 Correlating SQL Server and NetApp storage handling

 4

T E C H N I C A L R E P O R T

This report discusses the sizing guidelines to explain the setup and configuration of the system
before it is put into production mode, whereas capacity planning guidelines explain the procedure
to maintain a healthy system over time by monitoring critical resources for optimum or peak
performance. This report understands that performance doesn’t explain what a good or poor
performance measurement is; a performance counter is just a number. A counter that has an
associated healthy value gives the term “performance counter” more meaning. The term “healthy
counter” and its associated value are not objective criteria and will not be defined in this report,
but it is something the administrator of a given environment has to think about. For example, is
processor resource utilization of 100% a bad sign? The response may be that it may not be a bad
sign in certain scenarios. If the system is running heavy batch loads during off hours, then it might
not be a problem, but if the high utilization prevents important transactions from being serviced in
a timely manner, there might be a performance problem that could result in upgrading the system
or moving the execution of the batch jobs to another time of the day.

Developing capacity planning guidelines has to go through the following phases to achieve a
better and optimal result:

 Collecting performance counters
 Defining actions on counter values
 Taking actions when a counter turns unhealthy

This guide is generic, with no specific application as a reference model; therefore, basic
knowledge about I/O access methods used by SQL Server 2000 is important background
information when right-sizing NetApp storage for specific applications.

Readers who are knowledgeable about SQL Server I/O handling may skip section 2, “Factors
Affecting SQL Server’s I/O Handling.”

2. Factors Affecting SQL Server’s I/O Handling

The primary purpose of a database is to store and retrieve data. Therefore, performing a lot of
disk reads and writes is an inherent attribute of a database engine. Disk I/O operations consume
many resources and take a relatively long time to complete. Much of the logic in relational
database engines concerns making the pattern of I/O usage highly efficient. SQL Server uses a
buffer cache to highly optimize disk access. The buffer cache is managed dynamically;1 the size
is adjusted according to available physical memory; other applications running on the server,
including other SQL Server instances; and general transaction load. Database pages found in the
buffer cache are logical I/O, and database pages that have to be retrieved from permanent
storage are physical I/O.

2.1. Logical I/O (Buffer Cache) and the Effect on Physical I/O
SQL Server’s storage engine will look for database pages in the buffer cache before reading from
permanent storage. The more database pages found in the buffer cache, the more efficient SQL
Server will be, and the higher the throughput SQL Server will be able to support.

It is easy to illustrate how the size of the buffer cache can drastically influence the transaction
rate, which is affected by the changed logical I/O rate, which will indirectly change the physical
I/O rate, access pattern, and storage device’s utilization level. A simple test was executed using
an eight-disk volume on an F960. The database contained 100 million rows, and the transaction

 5

1It is possible to configure a fixed buffer cache size.

T E C H N I C A L R E P O R T

mix was 50% select and 50% update. A set of tests was executed with three different buffer
cache sizes (50MB, 150MB, and 500MB). The only difference between the three tests was the
size of the buffer cache. Changing the buffer cache size result in 40% higher transaction rate
(Figure 3); the server’s four processors were always 99% busy.

The main reason for the increased transaction rate is the changed cache hit ratio (rate of logical
I/O) and access pattern and because the I/O subsystem had to work much harder with the small
buffer cache. In fact, the changed buffer cache sizes completely changed the physical I/O pattern,
from being about 45% read and 55% write to being almost 100% write (Figure 4).

Test
Series Buffer Cache

Transactions
per Second

1 50MB 3045
2 150MB 3235
3 500MB 4250

Figure 3) Effect of buffer cache size (TPS).

When analyzing a given system’s transaction rate, relate it to the buffer cache hit ratio. If the
database is supporting an OLTP type of application, then the hit ratio ought to be greater than
80% The cache hit ratio with data warehouses might be even lower than 50%. If the hit ratio is too
low, try to determine why. The larger the database is (relative to the buffer cache) and the more
uniformly accessed the database is, the lower the buffer hit ratio will be; see section 2.1.1.

Figure 4 shows the filer’s disk I/O (average and maximum sample during the 20-minute test runs).
The eight-disk volume is fully utilized with the smaller buffer cache; it is highly utilized because of
random read/write. The physical I/O changes to almost 100% sequential write with the larger
buffer cache.

The difference between the average write rate and the maximum write rate is an indication of the
effect of database checkpoints. A checkpoint will flush all modified database pages in SQL
Server’s buffer cache as quickly as possible. Of course, if the storage device is already working
hard to keep up with the load, then the effect of the checkpoint will not be very noticeable, but
otherwise a checkpoint is easily detected; test 3’s average write rate was around 11MB per
second, which is lower than the result of test set 1. There are two reasons for this difference: first,
the value of a 10-second sample depends on the correlation between the checkpoint executed by
the database engine and the filer’s checkpoint; second, a bigger buffer cache will contain more
modified pages, and each page might be modified multiple times between checkpoints.

 6

T E C H N I C A L R E P O R T

0

2000

4000

6000

8000

10000

12000

MB/sec

1 2 3
Test number

Average physical I/O

avg.Read/s avg.Write/s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

MB/sec

1 2 3
Test number

Maximum physical I/O

max.Read/s max.Write/s
Figure 4) Effect of buffer cache size (MB).

The smaller buffer cache created a physical I/O load that highly utilized the disk drives and
practically saturated the used disk subsystem (volume). The filer’s CPU was also highly
influenced by the size of the SQL Server buffer cache. The smaller buffer cache created a load
on the filer that not only was very disk intensive but also highly utilized the filer’s CPU (Figure 5).

The same effect that was illustrated by changing the buffer cache could have been illustrated by
scaling the database or by changing the access pattern from uniform access to various degrees
of skewed access to a database.

 7

T E C H N I C A L R E P O R T

0

10

20

30

40

50

60

70

80

avg.%CPU avg.%Disk max.%CPU max.%Disk

Filer Resource Overview

Series1
Series2
Series3

Figure 5) Effect of buffer cache size (utilization).

Analyze a NetApp storage appliance’s resource use, then relate it to SQL Server’s cache hit ratio.
The cache hit ratio might change when consolidating, as the throughput increases, or as the
database size grows; the change might show up as a changed access pattern on the storage
device.

2.1.1. Correlating the Buffer Cache Size with the Database Size
The buffer cache optimizes physical I/O in several ways:

 Frequently referenced pages will only have to be read once from permanent storage
 A single database page can be updated multiple times before it is actually written to disk
 Database checkpoints make it possible to flush database pages to disk much more

efficiently than if one page had to be written at a time; pages are sorted according to file
offset

 Reading database pages directly from the buffer cache makes SQL Server’s I/O path
very efficient

A large buffer cache might also create a potential I/O bottleneck by flushing too much data to
permanent storage in too short a time. For example, if the buffer cache is 4GB and the checkpoint
occurs whenever 75%2 of the cache contains updated database pages, then the database engine
has to write 3GB of data as quickly as possible, which might create a response time problem for
the user of the database; the solution is to execute more frequent checkpoints.

SQL Server does everything possible to read and write database pages as efficiently as possible
by sorting and prefetching database pages according to their location in database files. Read is
minimized by keeping previously read database pages in the buffer cache as long as possible.
Section 2.1 illustrated how SQL Server’s buffer cache indirectly affects the physical I/O to
database files, and it is important to understand what can be deduced from this relationship

 8

2Checkpoint intervals are indirectly controlled by the database’s “recovery time” option.

T E C H N I C A L R E P O R T

between a given cache size, database size, and the database access pattern. If the buffer cache
size is 2GB and every database page is uniformly accessed, then the cache can contain any of
the following:

 100% of a 2GB database
 20% of a 10GB database
 2% of a 100GB database

Only rarely will any database application uniformly access every page in all database tables;
mostly only part of a database will be references, with some skewed access; some pages are
referenced more frequently than other pages. If an application frequently accesses 10% of a
database, then the 2GB cache can contain any of the following:

 100% of frequently accessed pages; 20GB database
 50% of frequently accessed pages; 40GB database
 20% of frequently accessed pages; 100GB database

Because of skewed access, some database pages will be referenced often enough to keep them
in the buffer cache for future access, resulting in a high hit ratio.

MB Buffer Cache
Percent Buffer

Hit Ratio
50 71
150 78
500 99

Figure 6) Buffer hit ratio (section 2.1 example).

Figure 6 and the discussion in section 2.1 illustrate how the buffer hit ratio will directly influence
the physical I/O that the storage device has to be able to support. The buffer cache will by default
be allocated dynamically by SQL Server. The actual size depends on available server memory;
available memory depends on the number of SQL Server instances and other processes utilizing
the memory.

An OLTP type of database ought to have a cache hit ratio of 80% or better, which is very different
from a data warehouse type of database, which will often have a hit ratio that is less than 50%. Of
course, it all depends on the size and access pattern of the database.

2.2. Physical I/O and I/O Functions
SQL Server 2000 uses several access methods supported by Microsoft® Windows 2000 to
improve its disk I/O performance. For a description of the physical structure of SQL Server
databases, see section 2 in TR3323: SnapManager® for Microsoft SQL Server 2000 Best
Practices, which also discusses database layouts when SnapManager for SQL Server is used for
backup and restore.

Access methods used by SQL Server 2000 and supported by Windows are important background
information to understand SQL Server’s I/O functions. I/O functions used by SQL Server are:

 Scatter-gather I/O
 Asynchronous I/O
 Synchronous I/O

 9

http://www.netapp.com/tech_library/3323.html
http://www.netapp.com/tech_library/3323.html

T E C H N I C A L R E P O R T

2.2.1. Scatter-Gather I/O
Scatter-gather I/O allows a read or a write to transfer data into or out of discontinuous areas of
memory in 8kB chunks. If an instance of SQL Server 2000 reads in a 64kB extent, it does not
have to allocate a single 64kB area and then copy the individual pages to buffer cache pages. It
can locate eight buffer pages and then do a single scatter-gather I/O specifying the addresses of
the eight buffer pages. Windows 2000 places the eight pages directly into the buffer pages,
eliminating the need for the instance of SQL Server to do a separate memory copy.

A database page is 8kB, and a table extent is 64kB (eight pages).

SQL Server sorts read requests according to offsets in the data files, expecting this will deliver
the lowest latency.

Table scans are very efficient in SQL Server 2000. The 8kB index allocation map (IAM) pages in
a SQL Server 2000 database list the extents used by tables or indexes. The storage engine can
read the IAM to build a sorted list of the disk addresses that must be read (or written). This allows
SQL Server 2000 to optimize its I/O requests as large sequential reads that are done in sequence
based on disk location. SQL Server 2000 issues multiple serial read-ahead requests at once for
each file involved in the scan. SQL Server 2000 Enterprise Edition dynamically adjusts the
maximum number of read-ahead pages based on the amount of memory present and the
responsiveness of the storage subsystem and is able to read multiple megabytes in a single I/O
operation.

The SQL Server 2000 Enterprise Edition advanced scan feature allows multiple tasks to share full
table scans. If the execution plan of a SQL statement calls for a scan of the data pages in a table,
and the relational database engine detects that the table is already being scanned for another
execution plan, the database engine joins the second scan to the first, at the current location of
the second scan, by doing the following steps:

1. The database engine reads each page once.
2. The database engine passes the rows from each page to both execution plans.
3. The database engine continues until the end of the table is reached:

a. The first execution plan has the complete results of a scan.
b. The second execution plan must still retrieve the data pages that occur before

the point at which it joined the in-progress scan.
4. The scan for second execution plan then wraps back to the first data page of the table

and scans forward to the point at which it joined the first scan:
a. Any number of scans can be combined in this way.
b. The database engine will keep looping through the data pages until it has

completed all the scans.

SQL Server might use scatter-gather to read ahead a maximum of 32 extents (2MB of data) when
scanning a table, depending on the table’s allocation and the storage device’s responsiveness.

2.3. Asynchronous I/O
When asynchronous I/O is used, an application that requests a read or a write operation from
Windows 2000 will immediately return control to the application. Using asynchronous I/O allows
instances of SQL Server to maximize the work done by individual threads by processing other
user requests while physical I/O is done in the background.

Most of SQL Server’s I/O operations are executed asynchronously. SQL Server will initiate
multiple asynchronous read requests during a table scan; it will read from each data file a table is
spread across. All write requests from the buffer pool are executed asynchronously.

 10

T E C H N I C A L R E P O R T

2.3.1. Writing Database Data Pages
Changes to database tables are written asynchronously in the background without directly
influencing processing of active transactions. Users’ response times can be influenced indirectly
by write activities in several different ways. If the storage device cannot keep up with the rate of
writes of data pages, then SQL Server might run out of free buffer pages. If that happens, then
each read has to wait for a free buffer page, and that will slow down every user’s response time
and decrease the system’s total throughput. Concurrent reads and writes from the same storage
device might influence each other’s latencies, but this is usually not a problem with NetApp
storage.

Figure 7 illustrates an example when the storage manager will create a scatter-gather write
sorted according to each page offset from the start of the file. The two adjacent pages (2031 and
2032) will be processed as a single I/O operation.

Page
203 Page 43 Page

1003 Page 5 Page
632 Page 11

Page
2031

Page
2032

Page
2003

Page
10

Page
701

Page
377

Page
497 Page 17

Figure 7) Writing buffered data pages.

2.3.2. Writing to File Groups
A file group is a logical grouping of physical files. SQL Server uses file groups as a type of I/O
load balancing object. Tables are created on a file group, and each table extent is created in a
round robin fashion that spreads the table in 64kB extents across all files in the file group. When
a table runs out of preallocated table space, then SQL Server allocates another extent (eight
database pages, 64kB) that will be allocated in the next file in the file group.

FILEGROUP

Four LUNs and one file per LUN

 pg 13-18

 pg 37-42

 pg 61-66 pg 55-60

 pg 31-36

 pg 7-12

 pg 43-48

 pg 19-24

 pg 49-54

 pg 25-30

 pg 1-6

Figure 8) Writing to file groups.

 11

T E C H N I C A L R E P O R T

Figure 8 illustrates a file group with four files. One table extent is created at a time. The first
extent (pp. 1–6) is allocated on the first file, the second extent is allocated on the second file, and
so on until no more file space is left, at which point the physical files will be extended if possible.

SQL Server uses this allocation scheme when scanning a table by issuing multiple 64kB I/O
requests concurrently across all files in a file group. SQL Server will also use this information
when scatter-gather reading multiple extents.

Use of file groups makes it easier to manage large databases, and SnapManager for SQL Server
makes it easy to move one or more files to another NetApp volume, which is very useful when a
database grows too large to be contained in a single volume/filer because of space or
performance limitations.

2.3.3. Automatic Checkpoints
SQL Server 2000 always generates automatic checkpoints. The interval between automatic
checkpoints is based on the number of records in the transaction log, not time. The time interval
between checkpoints can be highly variable: it is long if few modifications are made in the
database and short if a lot of data is modified.

The interval between automatic checkpoints is calculated from the recovery interval, which is a
server configuration option. This option specifies the maximum time SQL Server should use to
recover a database during a system restart. By default the recovery interval is zero, which implies
a crash recovery of one to two minutes.

The recovery interval is in many cases too short, so short that the database will continually be in
checkpoint mode, which is not very efficient. Remember that a short recovery interval will create
frequent checkpoints with short peak write loads (great for databases supporting low transaction
rates), and high values will create longer write peak loads during checkpoints; how long depends
on the buffer cache size. The effect of changing the recovery interval value has to be evaluated in
relationship with the I/O load generated by user transaction activities and how the storage device
handles the I/O load.

2.3.4. Reading from Data Files
If a relatively large buffer cache is retained in memory, an instance of SQL Server can
significantly reduce the number of physical disk reads required per transaction. A frequently
referenced page will most likely be read only once from disk into the buffer cache and will
probably remain there, eliminating further reads. The number of database pages referenced by a
SQL Server instance will heavily influence the I/O access pattern. Small databases might be
cached completely in the SQL Server memory buffer, eliminating future reads. Skewed access to
very large databases might also cache most, if not all, referenced pages and thereby change the
read and write ratio to almost only writes with a small ratio of reads; see section 2.1.1.

2.4. Synchronous I/O
In synchronous I/O, the operating system does not return control to the application until the read
or write completes. SQL Server 2000, like other relational database engines, uses a write-ahead
log, ensuring that no database page is written to storage before the associated page is written to
disk.

 12

T E C H N I C A L R E P O R T

Writes to a transaction log are synchronous when transactions are committed. SQL Server has to
flush all log records associated with a committed transaction before the application can start the
user’s next transaction.

2.4.1. Writing the Transaction Log
To achieve maximum throughput, the log manager maintains two or more log caches; one log
cache is currently used for new log records. A log cache can be in one of two possible queues:
the flush queue or the free queue. A log cache is placed in the flush queue when a user thread,
for example, commit a transaction, requests it to be written to disk; a log cache is placed on the
free queue after it has been flushed to disk.

Figure 9 illustrates a SQL Server environment with five log caches. Two caches are located in the
flush queue; users who are waiting for a cache to be flushed cannot continue processing current
or pending transactions until all previous log caches have been flushed to disk.

Currently in
use

waiting to
be

flushed

Being
flushed

FREE QUEUE FLUSH QUEUE

log caches

Figure 9) Log cache overview.

The size of the write block to the transaction log depends to a great degree on the rate of
transactions modifying the database. The smallest write size is 512 bytes, but that size will
increase with the load and number of users—how large is difficult to say, but 1kB, 2kB, 4kB, and
even 16kB are not unusual.

If flushing the log cache takes too much time, then on average more users will be waiting in the
flush queue, and users’ response times will increase.

Flushing of the transaction log has not been observed to be an issue with NetApp storage.

3. Optimizing NetApp Storage for SQL Server

NetApp storage appliances allow SQL Server to efficiently service database operations, such as
transactions, backup, database verification, and database restore. Disk throughput is a limited
resource that can deliver a given number of operations per second, depending on the access
pattern.

Writing is managed by NetApp storage very efficiently, acknowledged as soon as recorded safely
in NVRAM and flushed to disk asynchronously during checkpoints. The factor that limits
throughput is often the number of disk drives in the accessed volume.

 13

T E C H N I C A L R E P O R T

3.1. Read-Ahead and Setting of minra
Blocks frequently read from NetApp storage might stay in filer memory for future reads after the
initial read. Database applications with sequential read access will often retrieve data from
NetApp filer memory because of NetApp read-ahead technology.

The volume option minra controls whether the NetApp storage device will read ahead. If minra is
on, then the storage device will only read the database pages requested by SQL Server. If minra
is off, then the storage device will speculatively read ahead, depending on the access pattern.
Read-ahead might benefit SQL Server’s performance, but it depends on the I/O load generated
by an application’s specific environment.

Use of the minra volume option depends on the physical access pattern generated by the
application in the specific system environment. Databases with sequential access, for example,
data warehouse, will benefit from minra set to off, and databases with random access, for
example, OLTP, will benefic from minra set to on.

3.2. FCP or iSCSI Infrastructure Setup
Many performance issues are related to poorly configured network infrastructure supporting the
chosen I/O protocol. Therefore, correct design and configuration of the network are critical for
optimal performance.

Set up and configure FCP or iSCSI according to recommendations in the guide for SnapDrive™
3.1 (NOW access required) at Installation and Administration Guide for SnapDrive.

3.2 Files, File Groups, and Disks
When translating SQL Server storage requirements into NetApp storage requirements, several
storage-related factors have to be considered in two different but related areas: space and
throughput. Before discussing these factors, let us look at basic database layout considerations.

SQL Server stores data and the transaction log in disk files. As a default, data and log files are
created in the location specified in the server configuration.3 However, to maximize performance
and manageability, a few basic principles should be applied:

 Spread data over as many disks as possible. In general, the more disks (spindles) you

have (regardless of their individual size) and the faster your access to them, the more
quickly the storage engine can read and write data. The larger your system usage
becomes, the more important it is to separate data files from log files by storing them on
different sets of physical drives.

Placing log and data files in the same LUN and volume has not been observed as a
performance issue with NetApp storage.

 Use file groups to make your enterprise database more manageable.

Every database begins with one default file group, which can work effectively without additional
file groups, and many systems will not need to add additional file groups. However, as a system
grows, the use of additional file groups can provide more manageability, when implemented and
maintained by a qualified DBA. Multiple file groups make it possible to place tables with very
different access patterns on different storage devices. Hence, when implementing or optimizing a
database design, the database administrator needs to consider the configuration of the database

 14

3The model system database is the template for creating new databases.

http://now.netapp.com/NOW/knowledge/docs/snapdrive/relsnap31/pdfs/admin.pdf

T E C H N I C A L R E P O R T

storage components, particularly the layout of physical and virtual disks and the arrangement of
the database files across disks.

3.3.1. Space Considerations
Database files are placed on LUNs, which are created on volumes. A volume is the main space
consideration when creating LUNs for placing database files. Space is needed not only for current
databases’ files but also for the following:

 Volume space for Snapshot™ backups—free volume space equal to the total space
allocated to all LUNs placed in the volume

 Space required for each new Snapshot copy equal to all volume blocks changed since
the previous Snapshot copy was created

 Backup of a transaction log, requiring space in SnapInfo for the active section that is
copied to that directory

 Space for metadata created by SQL Server and SMSQL during backup creation
 Space in SnapInfo where copies of system database files will be streamed during backup
 Space to expand LUNs as free space is being allocated by growing databases

It is not complicated to estimate volume sizes when current database sizes, change rate, and
growth rate are known, but partial knowledge is often the case, which increases the risk.

3.3.2. Throughput Considerations
Throughput requirements are much more difficult to estimate, not only because it is very difficult
to understand the access pattern, especially over time as a database is growing, but also
because an online database is not the only user of physical I/O; other related operations will also
create physical disk loads. Some examples:

 When SMSQL requests SQL Server to back up a transaction log, SQL Server will extract
log records from the transaction log file and sequentially write extracted data to the dump
file in SnapInfo.

 Snapshot copy creation will create a slightly noticeable load on the filer.
 Verification on a backed-up database will create a read load on disk drives containing the

volume. The load has two phases:
o Mounting the LUN in the Snapshot copy as writable will create a light load for a

short duration.
o Verifying the database implies reading all database pages and will create a

physical read load on the filer.

It is recommended to offload the verification process to a dedicated server, which will
decrease resource use on the online server.

 If SnapMirror® is used, each replication creates a read load on the source volume(s).
o It is recommended to place all database files and SnapInfo in a single volume.

 Restoring databases will restore all LUNs used by the databases in three phases:
o Single-file-SnapRestore® (SFSR) will be used to restore all LUNs used by

databases to be restored. This action will create disk activities.
o SMSQL will restore the full backups in the LUNs. This will create limited

read/write activities.
o SMSQL will ask SQL Server to apply backed-up transaction logs to recovering

databases and will sequentially read backed-up transaction logs located in
SnapInfo and subsequently flush database pages to disk.

 15

T E C H N I C A L R E P O R T

4. Sizing NetApp Storage for SQL Server

Sizing high-end systems for both space and throughput is best done when all parties are
cooperating to create the correct storage infrastructure, fulfilling both space and throughput4
requirements. The sizing process is done in two related phases. The first phase involves
collecting information related to the current database environment: number of SQL Server
instances, databases managed by each instance, current database sizes, growth rate, and rate of
change. This information is used during phase 2 to decide filer model, number of disk drives,
volume, and LUN configuration. The two phases are described in section 2 of TR3323:
SnapManager for Microsoft SQL Server 2000 Best Practices.

As has been illustrated throughout this technical report, throughput requirements depend on
many interrelated factors that make it difficult to size storage for throughput; the actual load
depends on the application utilizing SQL Server databases, number of users, mix of transactions,
hardware configuration on which SQL Server is running, resulting physical I/O load, and access
pattern. Still, we can approximate expected throughput requirements from what is known about
the current SQL Server environment and how it relates to the new setup.

Customer sizing requirements might vary greatly depending on each customer’s situation, but in
general the situations can be grouped into three different categories; each category might require
special consideration.

Consolidate local storage to NetApp storage; current SQL Server instances will not be
consolidated. Since the SQL Server instance will continue using the current Windows server, the
effect of SQL Server’s buffer caching will not change, and the I/O rate should not change either.
Therefore, sizing NetApp storage is based on current database storage requirements as
described in section 4.1.

Consolidate multiple SQL Server instances to fewer servers and consolidate databases to
NetApp storage. As discussed throughout this paper, SQL Server optimizes its physical I/O by
caching frequently accessed data as well as possible, since the resulting physical I/O depends to
a large degree on the caching hit ratio. Because of this fact, it is important to monitor each SQL
Server instance’s buffer cache hit rate before and after consolidation (Figure 10). The goal is to
end up with a cache hit ratio as good as or better than after migration.

If the cache hit ratio becomes lower after consolidation, then the physical I/O will be greater, and
the access pattern might also change (see section 2.1).

Figure 10 shows how perfmon can monitor SQL Server’s buffer cache hit ratio.

 16

4Throughput is used as a synonym for both megabytes of I/O per second and time to servicing
the I/O requests.

http://www.netapp.com/tech_library/3323.html

T E C H N I C A L R E P O R T

Figure 10) Perfmon buffer cache hit ratio.

When it is a completely new application, the customer may not know the storage
requirements for the environment. Sometimes the user may have an idea about the load—for
example, that the transactions load will be 100,000 or the initial database size will be 10 million
rows—but this type of information is useless. Let us analyze why this information cannot be used
for sizing storage requirements.

It is better to consider the response to “How much storage does a table with 10 million rows
require?” The smallest size of a row is one byte, and the maximum size is 8060 bytes, which
partly explains why the number of rows cannot be used for sizing storage requirements. It is
impossible to estimate a space requirement without knowing the row size, but the actual space
requirement also depends greatly on how a table is designed. The example in Figure 11 is a good
example of why it is important to know the table layout and the space occupied by a single row.

 17

T E C H N I C A L R E P O R T

Figure 11) Effect on storage requirement when partitioning a table.

Figure 11 compares space requirements when a single customer table is used. The summary for
when the table has been partitioned the summary is as follows:

 Each row size in the nonpartitioned table is 4600 bytes. A database page is 8kB, and
since a row cannot span more than one page, in this case each page can only contain
one row; 3400 bytes are wasted.

 The nonpartitioned table not only will take up more physical storage but also will use
more buffer cache; the results will be a lower cache hit ratio and a higher physical I/O
rate.

 The partitioned table uses less physical storage and less buffer cache, which will result in
a higher cache hit ratio and less physical I/O.

Sizing storage requirements in this case is very complicated and can only be done in cooperation
with the database administrator and maybe the application vendor. If the database is installed,
then it is possible for the DBA to calculate row sizes with the help of Enterprise Manager and
thereby estimate space requirements for each table.

The number of transactions cannot be used for sizing storage requirements because a
transaction might manipulate data from a single row or many rows from one or many tables. If the
transaction is known, then it is possible to estimate the number of logical I/O operations required.
If the sizes of the database, access pattern, and buffer cache are known, then it is possible to
estimate the number of physical I/O operations required per transaction. These calculations are
complicated and should only be done by the DBA responsible for the new environment. Also, it is
important to know the ratio of reads and writes.

 18

T E C H N I C A L R E P O R T

4.1. General Sizing Recommendations
The recommendations in this section are based on TR3323: SnapManager for Microsoft SQL
Server 2000 Best Practices (section 3). Sizing storage requirements for a specific SQL Server
environment consist of several related objects:

 System databases
o Focus on tempdb

 User-defined databases
o Data files
o Transaction log files

 SnapInfo
o Metadata
o Full backup
o Backup of transaction log
o Streaming-based backup of system databases
o Streaming-based backup of user-defined databases

 Snapshot copy creation

SQL Server tries to optimize its physical I/O as well as possible by caching database pages and
by writing modified cached database pages to permanent storage in a sequential fashion, as
described throughout this technical report. Hence, even OLTP-type applications will try to read
and write sequentially.

4.1.1. Space Requirements for System Databases
All system databases are fairly small, less than 20MB. Limited changes take place on system
databases (not including tempdb), unless an application uses a system database for some
purpose, so they only have to be backed up whenever changes are made. Tempdb is recreated
every time SQL Server is restarted and should never be backed up, because the backup will
never be used.

It is recommended to place all system databases in a dedicated LUN. The I/O load on tempdb
can become very high (how high depends on the application, number of databases, and SQL
statements executed by the SQL Server instance).

An overview of space requirements for system databases is provided in Figure 12. Since
streaming backup (SnapManager for SQL Server 2000) is used for all system databases, the
actual space requirement for SnapInfo (SnapManager for SQL Server 2000) is equal to the size
of the online database, since the system databases are copied to SnapInfo. Tempdb is recreated
every time SQL Server is restarted; therefore, there is no need to back up tempdb. Space and
throughput that tempdb must be able to support depend on the specific environment.

System Database

Online Space SnapInfo
Space

I/O Rate

System databases
(without tempdb)

Less than 150MB

300MB Low and not an
issue

Tempdb Environment
dependent

No backup Environment
dependent; can be
very high

Figure 12) Space requirement for system databases.

 19

http://www.netapp.com/tech_library/3323.html
http://www.netapp.com/tech_library/3323.html

T E C H N I C A L R E P O R T

4.1.2. User-Defined Databases
Space and throughput requirements for user-defined databases depend on measurements
collected at peak loads of the production system.

Calculating space requirements for user-created databases requires several measures, as shown
in Figure 13, which illustrates space requirements that have to be collected. Figure 14 shows
throughput data that has to be collected. Space requirements are used as an estimate for how
much storage space is required, and throughput requirements are used to estimate the number of
disk devices necessary for supporting the required I/O rate.

SQL Server
Instance Database Database Size Database Type

DB 1 39GB DSS SQL Server 1 DB 2 25GB OLTP
DB 3 200GB OLTP
DB 4 75MB Test SQL Server 2
DB 5 50MB OLTP

2 SQL Server
Instances

5 databases 265GB

Figure 13) Sample current SQL Server information.

Database Reads per Second MB Write per
Second

Change Rate per
Month

 Growth Rate per
Month

DB 1 5MB 1MB 15% 5%
DB 2 8MB 1.5MB 10% 8%
DB 3 20MB 6MB 12% 6%
DB 4 0.5MB 0.1MB 5% 40%
DB 5 1.5MB 0.2MB 20% 10%

Total 35MB 8MB 32GB 16GB
Figure 14) Sample I/O throughput at peak load.

Figure 15 describes the data to be collected and the tool to use to collect the data. Initial
database size and growth rate are fairly easy to collect, whereas change rate is more difficult to
measure.

User-
Created

Databases

Initial Space Growth Rate per
Month

Change Rate per Hour

Data Files Total physical
size of database
files, usually
measured in GB.

Growth rate of
physical files used by
database, usually
measured in MB.

Database pages changed
between backups will use
space in Snapshot copies.

Transaction
Log Files

Will stabilize at a
given size
depending on
configured

Will only grow in the
beginning until a
balance reached
between arrival rate of

Each time transaction log is
backed up, log file will be
logically truncated and
made available for new

 20

T E C H N I C A L R E P O R T

recovery mode
and how often log
is backed up.

new transactions and
frequency log is
backed up.

transactions. Physical file
size will not change.

How to
Collect

Figure 8
illustrates how to
find a database's
current size.

Figures 9 and 10 show
how to use perfmon to
monitor size of a
database’s files.

There is no easy
methodology to collect this
information. Understanding
the application to create
educated guesses is the
best way.

Figure 15) Space requirement for system databases.

Figure 16) How to find database size with Enterprise Manager.

Figure 16 shows how to find a database’s current size. Size is the current preallocated physical
database size. Space available is the current free preallocated space available for new inserted
database objects. The Data Files tab will show the number of data files and file groups and the
size of each data file. The Transaction Log tab will show log files and size.

Figure 17 illustrates monitoring the size of the test database’s data files and transaction log file.
Log Growths is the total number of times the physical size of the log file has grown; this value
should stabilize after a while as a balance is reached between arrival rates of new transactions
that modify data and the rate of transaction log backup.

 21

T E C H N I C A L R E P O R T

Figure 17) Monitoring the size of database files.

4.1.3. Sizing a Volume for Space Requirements
With the data collected, the space requirements can be calculated in two steps:

1. LUN size = for each database (<initial database size> + <growth rate * months>)
2. Volume size = for all LUNs in volume (<LUN size * 2> + < change rate (adjusted to time

between Snapshot copy creation) * number of Snapshot copies>)

Step 1 calculates the space requirements for all databases using a LUN including the required
space for growing the database files over a given period—for example, six months. Step 2
calculates the volume size required for all LUNs, including Snapshot copies for the same period.

4.1.4. Sizing a Volume for Throughput
An application’s I/O performance depends on its I/O load’s characteristics and number of physical
disk drives supporting that I/O load. A disk drive can only support a maximum number of I/O
requests per seconds; how many it can support depends on access pattern and how fast the disk
is.

Current 10,000 RPM and 15,000 RPM disk drives can support roughly 130 to 300 and 180 to 400
4kB read or write operations per second per disk, respectively. Therefore, it is important to
estimate the I/O rate for all LUNs utilizing the same volume.

 22

T E C H N I C A L R E P O R T

When estimating total peak throughput requirements, remember to include:

 Other processes using the same NetApp storage device
 SnapMirror processes
 Backup of transaction logs (Snapshot backup will not influence the throughput)
 Database verification

When the throughput requirements are well understood, then calculate the number of disk drives
required to support the required throughput. Current disk technology can support a maximum
number of I/O requests per second; how many it can support depends on the access pattern and
how fast the disk is. Current 10,000 RPM and 15,000 RPM disk drives can support roughly 130 to
300 and 180 to 400 4kB read or write operations per second per disk, respectively. Therefore, it is
important to estimate the I/O rate for all LUNs utilizing the same volume.

4.1.5. Sizing Transaction Logs
Access to a database’s transaction log is sequential. How high an I/O load the transaction log
must be able to support can be estimated by monitoring the current I/O load with the Microsoft
performance monitor tool (perfmon). Figure 18 is an example of monitoring a test database’s
transaction log. Perfmon has enough data to size for both space and throughput.

It is in general a performance advantage to place files with different access patterns on different
volumes (as described in technical report 3283), but in many cases the performance requirement
is not high enough to make the advantage noticeable. Hence, in most cases all database files can
be located in the same LUN/volume. When performance is very critical and the I/O load is very
high, then it is recommended to place the log file in a LUN separate from the LUN used by the
data files and on different volumes. Hence, even though the access to a transaction log is
sequential, the sequential nature will change to somewhat random when multiple databases’ log
files are placed in the same LUN/volume.

Figure 18) Monitoring transaction logs.

 23

T E C H N I C A L R E P O R T

4.1.6. Sizing SnapInfo Used by SnapManager for SQL Server
Space requirements for SnapInfo depend mainly on the number of backed-up transaction logs
and whether streaming backup is used5. Figure 19 is an overview of actions taken when a backup
is executed. Any backup action will create metadata in SnapInfo; metadata is created by both
SMSQL and SQL Server 2000.

 Outcome

Backup Type Metadata
created

Streaming
Data

Snapshot Copy
of Volume with
Database

Snapshot
Copy of
SnapInfo

Full Backup of
User Database x x x

Full Backup of
System Database x x x

A
c
t
i
o
n

Backup of
Transaction Log x x x6

Figure 19) SnapInfo content overview.

Space requirements for SnapInfo depend on all of the above factors, including the number of
databases, size of streamed databases, number of backups to be kept online, and active size of a
database’s transaction log since the last time the transaction log was backed up. Figure 20 is an
overview of what influences SnapInfo space requirements.

 Space Requirements Comments

Metadata Less than 20kB

Streaming Full
Backup

Equal to size of online
database

Initial sizes of system databases less
than 20MB; see Figures 8 and 9

Snapshot Copy
Equal to changed filer
blocks since creation of
last Snapshot copy

Transaction
Log Backup

Equal to active sections
of transaction log

Figure 10 illustrates how to monitor
used size

Figure 20) SnapInfo space overview.

4.1.7. Snapshot Management
When sizing volumes containing virtual disks for Microsoft SQL Server 2000, consider the

5Streaming-based backup will always be used with system databases. User-created databases
sharing LUNs with a system database will also use streaming-based backup, which is not
recommended.

 24

6A Snapshot copy of the volume containing SnapInfo will be created by default, but can be turned
off.

T E C H N I C A L R E P O R T

number of Snapshot copies that will be created and the length of time they will be kept. Disk
space consumed by a Snapshot backup consists only of blocks that have changed since the last
Snapshot copy was created.

For example, a Snapshot copy of a 100GB database is created at midnight. If between midnight
and noon the following day, 500MB of data is changed or deleted from the database, the copy will
consume only 500MB.

However, if that same 100GB store Snapshot copy is kept for 20 days and experiences the same
rate of data change during that period, the Snapshot copy will now consume 10GB (500MB * 20
days). Properly managing Snapshot copies requires balancing the number of copies and the
length of time they are kept.

4.1.8 Space Reservation
As part of the space reservation feature, WAFL® reserves blocks equal to 1X times the specified
size of the LUN being created. If a volume of 80GB is being created with a planned growth rate of
an additional 24GB, enough spindles to accommodate 208GB ((80 + 24) * 2) will be required.
Space reservation is designed to guarantee writes for virtual disks. More information on space
reservations can be found later in this document.

4.2. Volume Sizing Recap
Figure 21 is an overview and an example of estimating space requirements. This example does
not size for throughput, but some discussion is included during the description of the content.

A link to the Excel document is the SQL Server space calculator. The spreadsheet is a template
sizing storage requirements for system databases, five user databases, and SnapInfo. The
spreadsheet calculates the LUN and volume sizes and the database size after x months.

16+4 638 OLTP 1 184 I: 167 150 5 15 6 0.5
OLTP 2 15 J: 14 10 20 25 6 1
OLTP 3 3 F: 3 2 15 10 6 0.2
OLTP 4 1 F: 1 0.7 15 5 6 0.2

8+2 692 DSS 1 238 K: 217 200 2 10 6 0.5
 8+2 376 144 L: 131 100 25 5 6 0

6+2 99 45 T: 15

6+2 444 202 S: 2 200

LUN Size +
10% (GB)

Drive
Letter D

at
ab

as
e

Si
ze

 a
fte

r X

M
on

th
s

Filer

Volume
RAID-DP™

Data +
Parity

Used
Volume
Space

Including
Snapshot

Copies (GB)
Database

Name In
iti

al
 S

iz
e

(G
B)

G
ro

w
th

 R
at

e
pe

r M
on

th

(%
)

C
ha

ng
e

R
at

e
pe

r M
on

th

(%
)

Si
ze

 fo
r

N
um

be
r o

f
M

on
th

s

Tr
an

sa
ct

io
n

Lo
g

(G
B)

 T
em

pD
B

(G

B)

Sy
st

em

D
at

ab
as

es

(G
B)

Sn
ap

In
fo

(G

B)

1

Figure 21) Space allocation overview (Excel spreadsheet).

The information in Figure 21 is an example of a recommended layout but is only one solution out
of many possible layouts. Recommendation must be related to the specific environment and its
requirements.

 25

http://www.netapp.com/tech_library/SQL-server-space-calculator.xls

T E C H N I C A L R E P O R T

 The columns are defined in the SQL Server space calculator.

4.3. Special Sizing Considerations for MSCS
If the deployment will use MSCS, then special consideration needs to be taken when sizing
storage requirements. Because of the fact that the disk drive letters are shared by all nodes in a
system, the number of possible LUNs may be exposed to an issue with MSCS due to the fact that
drive letter X needs to be available on all nodes in case of failover. This has implications for the
total number of LUNs that can be created on an MSCS configuration and is important, because
multiple SQL Server instances are usually active in an MSCS configuration. The total number of
drive letters available for a clustered configuration is generally 23. Therefore, two nodes will each
have 11 possible LUNs available plus the quorum disk. Four nodes (Windows 2003) will only
have five LUNs available per node plus the quorum disk.

Each SQL Server instance active on a node requires three LUNs:

 SQL Server and its system databases
 User-created database
 SnapInfo (if SnapManager for SQL Server is used)

A large and powerful Windows platform will often support multiple SQL Server instances. Each
instance requires three LUNs, two instances require six LUNs, three instances require nine LUNs,
and four instances need 12 LUNs.

It is important to remember that after a failover all server resources will be shared by all SQL
Server instances running on that server, and this can affect SQL Server’s buffer cache hit ratio.
When a single SQL Server instance is running on a server, then all available memory might be
used by that one instance, but after a failover the available memory has to be shared by all
instances running on the server, and this might completely change the physical I/O rate and
access pattern.

5. Ongoing Capacity Planning and Monitoring

Capacity planning involves planning for the capacity of a system to maintain the level of service
expected by the user community and consists of two phases:

 Precapacity planning or sizing as discussed in this technical report
 Postcapacity planning, which will be discussed in this section

The success of precapacity planning depends on the quality of the data used to size the system,
as described in section 5. Sizing is important because a new system will be expected to meet the
term of a service-level agreement (SLA), and it is expected that the system configuration and
infrastructure will be powerful enough to meet the SLA even during times with peak load.

Capacity planning or predictive analysis involves complex and ongoing performance
measurements and study of hardware and software resource consumption. The study is used to
predict or project resource consumption to plan for system capacity increases as needed. When
more resources are needed, before encountering critical resource limitation, anticipate and plan
ahead. When this approach is used, money can be saved and the total customer experience can
be improved because users are spared aggravation.

 26

http://www.netapp.com/tech_library/SQL-server-space-calculator.xls

T E C H N I C A L R E P O R T

An in-depth discussion of capacity planning is outside the scope of this technical report, but there
are many excellent technical reference guides available. One such reference guide that focuses
on SQL Server 2000 is from Microsoft: SQL Server 2000 Performance Tuning (“the in-depth,
practical guide to performance tuning, optimization, and capacity planning,” by Edward Whalen,
Marcilina Garcia, Steve Adrian DeLuca, and Dean Thompson; ISBN 0-7356-1270-6).

This report will only list performance counters that are candidates to be collected with the purpose
of analyzing the trend over time and thereby predicting when it will be beneficial to increase
system resources.

Performance monitoring is something every administrator has to do and should do; performance
tuning is something everybody has to do periodically, and the same counters can be used for
capacity planning purposes. The main goal with performance monitoring is to make certain that
no resource is a bottleneck that results in requests waiting for access to the limited resource,
whereas capacity planning is to predict when it will be beneficial to add system resources.

This section will focus on one method to set up perfmon with a minimum basic set of counters to
monitor a system and how to analyze the data.

5.1. Basic Set of Counters
It is not possible to track everything, but the counter described in this section give a good
overview of what is happening on the server. This short list of counters could be dropped into
Performance Monitor to get a baseline on the performance of all servers. The counters can also
be added to a third-party tool.

Process Object % Processor Time

The measurement is the amount of time that the server is executing a nonidle thread.
This counter provides an indication of a possible bottleneck. A server will go to 100%
CPU at times, but unless this is sustained for a period of time (for example, 30 minutes,
system dependent), it is usually nothing to worry about. However, over time, for example,
a month, if the CPUs are averaging constantly more than 50%, it might be a good idea to
start planning for an upgrade. If processors are averaging constantly greater than 70%,
then it might be time to hurry that planning along.

System Object Processor Queue Length
Watch the value over a sustained period of time to see if the CPU is a bottleneck. The
counter measures how many threads are waiting for processor time. The count includes
all threads that are "ready" and not waiting on some other thing such as I/O to complete.
The general rule of thumb is that this value should be less than two times the number of
processors in the system. If it is growing over time and the CPU % is greater than 80%,
more or faster processors are probably needed.

Memory Object Pages/sec
This counter measures the number of memory pages read from or written to disk. From
the SQL Server 2000 Operations Guide:

Defined as the number of pages read from or written to disk to resolve hard page faults.
(Hard page faults that occur when a process requires code or data that is not in its
working set or elsewhere in physical memory and must be retrieved from disk.) This
counter was designed as a primary indicator of the kinds of faults that cause system-wide
delays. It is the sum of memory: pages input/sec and memory: pages output/sec. It is
counted in numbers of pages, so it can be compared to other counts of pages, such as

 27

T E C H N I C A L R E P O R T

memory: page faults/sec, without conversion. It includes pages retrieved to satisfy faults
in the file system cache (usually requested by applications) noncached mapped memory
files. This counter displays the difference between the values observed in the last two
samples, divided by the duration of the sample interval.

This is a counter that cannot be measured independently of a system. It is not possible to
say that 1000 pages per second is a high or low value; it really depends on the system.
The counter is relative to the system and has to be watched to see if things are changing.
Make a change and see if the counter goes up or down. In general, adding memory (or
allocating more to SQL Server) should lower this counter, but be careful. Understand this
counter’s behavior relative to the measured baseline; watch it as changes are made to
the system. SQL Server will by default dynamically manage its memory buffer cache, but
it is possible to set it manually to a fixed value. If this is done incorrectly too high, then
this counter points to the problem.

Memory Object Available MBytes

This measurement is the amount of megabytes of memory on the computer (from the OS
perspective) that is available to be allocated to processes. It's the sum of free, standby,
and zeroed memory pages. Look at this to see if the average amount of megabytes is
fairly consistent for a baseline perspective. This can often be a clue to some other
process or service being added when one expects everything on the server is stable with
no new application or workloads.

PhysicalDisk Object Avg. Disk Queue Length

This counter measures whether I/O requests are being serviced or are waiting in the
queue for the disk drive to catch up on requests. This can be a bottleneck in performance
for a server in that, if it grows large or is consistently above eight (somewhat system
dependent) for a particular disk, then that disk device cannot keep up with the arrival of
new I/O requests.

PhysicalDisk Object % Idle Time

The % disk time counter has been analyzed a bit on the Internet, and there are some
problems with how the data is collected (see O'Reilly Network: Top Six FAQs on
Windows 2000 Disk Performance [Jan. 18, 2002]). The idle time is supposedly more
accurate. Subtracting this from 100 gives an idea of how hard the disks are working.

PhysicalDisk Object Avg. Disk Sec/Write
This counter measures the average time, in seconds, of a write of data to disk. If the
average value increases over time, then it points to a potential write performance
problem. Possible reasons can be that the load has increased over time, the device is
running out of free space, or the ratio of read/write has changed.

PhysicalDisk Object Avg. Disk Sec/Read

This counter measures the average time, in seconds, of a read of data from disk. If the
average value increases over time, then it points to a potential read performance
problem. Possible reasons can be that the load has increased over time, the ratio of
read/write has changed, the access pattern has changed, or the device is fragmented.

Network Interface Object Bytes Total/Sec

This counter measures the number of bytes being transmitted per second on the NIC.
There will be one instance per NIC on the machine, including one for the loopback
adapter.

 28

http://www.oreillynet.com/pub/a/network/2002/01/18/diskperf.html
http://www.oreillynet.com/pub/a/network/2002/01/18/diskperf.html

T E C H N I C A L R E P O R T

SQL Server Access Methods Object Full Scans/Sec
This counter should always be captured. It shows how often a table index is not being
used and results in sequential I/O.

From the SQL 2000 Operations Guide: Defined as the number of unrestricted full scans.
These can be either base table or full index scans. Missing or incorrect indexes can result
in reduced performance because of too high disk access.

SQL Server Database Object Transactions/Sec
This counter measures the number of transactions started per second. Transactions are
the basis of everything in SQL Server, and most queries are implicit transactions. This
measurement is extremely handy for determining if the load has substantially increased
over time. This value is very different from a “business transaction” such as a new order,
stock-level, or payment transaction. Each business transaction might consist of multiple
measured transactions.

SQL Server Buffer Manager Object Buffer Cache Hit Ratio

This counter shows the percentage of pages that are found in SQL Server’s buffer pool
without having to incur a read from disk. A well-balanced system will have hit ratio values
greater than 80%. The hit ratio ought to be 90% or better for OLTP-type databases and
might be less than 60% for DSS-type databases.

SQL Server Locks Object Average Wait Time
This counter measures the average amount of time, in milliseconds, that a user is waiting
for a lock. Over time it is a good indicator for a general performance problem or if a
performance issue is specific to one user.

SQL Server Latches Object Average Latch Wait Time
This counter measures the average amount of time, in milliseconds, that a latch request
had to wait before it was serviced. Over time it is a good indicator for a general
performance problem or if a performance issue is specific to one user.

6. Summary

Sizing, performance monitoring, and capacity planning are complex functional areas that are best
understood and performed as a team effort and analyzed continually.

The discussions in this paper are intended to be an overview of the process, resulting in right
sizing NetApp storage for SQL Server databases and knowing how to predict when to upgrade
system components for maintaining system responsiveness, satisfying the service-level
agreement (SLA).

The report explains how SQL Server 2000 uses I/O functions supported by Windows 2000 to
optimize flushing of database pages to disk. The higher the buffer cache hit ratio is, the less the
physical read rate will be. Database pages in the buffer might be changed multiple times between
being flushed to disk, which will decrease the physical write rate. Checkpoints make it possible for
SQL Server to change a random write pattern to sorted sequential patterns, which are more
efficient.

Guidelines for sizing storage for both space and throughput have been discussed, and a
supporting sizing Excel spreadsheet for space has been included. Sizing for throughput depends

 29

 30

T E C H N I C A L R E P O R T

on the server on which SQL Server is running, available memory for the buffer cache relative to
the database size, and the actual physical access pattern generated by the application utilizing
SQL Server for storing and retrieving data.

Monitoring is essential for capacity planning purposes but also for verifying the system is correctly
sized to service the actual load during peak transaction rate.

7. References and Additional Resources

Part of section 2 builds on information from the MSDN home page, especially: SQL Server
architecture.

An excellent guide to SQL Server’s internal workings is Inside SQL Server 2000, by Kalen
Delancy (ISBN 0-7356-0998-5).

A basic good capacity planning guide is The In-Depth, Practical Guide to Performance
Tuning, Optimization, and Capacity Planning (Edward Whalen, Marcilina Garcia, Steve
Adrian DeLuca, and Dean Thompson; ISBN 0-7356-1270-6).

SnapManager 1.0 Installation and Administration Guide (NOW access)

SnapDrive 3.1 Installation and Administration Guide (NOW access)

Network Appliance—SnapManager V1.0 for SQL Server 2000

Network Appliance—SnapManager for Microsoft SQL Server 2000 Best Practices

Microsoft TechNet: Microsoft Server 2000 Resource Kit

An excellent Web site is SQL Server Central.

© 2004 Network Appliance, Inc. All rights reserved. Specifications subject to change without notice. NetApp, NetCache, and the Network Appliance
logo are registered trademarks and Network Appliance, DataFabric, and The evolution of storage are trademarks of Network Appliance, Inc., in the
U.S. and other countries. Oracle is a registered trademark of Oracle Corporation. All other brands or products are trademarks or registered
trademarks of their respective holders and should be treated as such.

http://msdn.microsoft.com/default.aspx
http://msdn.microsoft.com/SQL/sqlarchitecture/default.aspx
http://msdn.microsoft.com/SQL/sqlarchitecture/default.aspx
http://now.netapp.com/NOW/download/software/snapmanager_sql2k/1.0/
http://now.netapp.com/NOW/download/software/snapdrive_win/3.1/
http://www.netapp.com/tech_library/3283.html
http://www.netapp.com/tech_library/3323.html
http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/en-us/default.mspx
http://www.sqlservercentral.com/

	SQL Server 2000 Sizing and Capacity
	Planning Guidelines
	
	Network Appliance, Inc. | Gerson Finlev | December 2004 | TR 3363

	1.Introduction
	2.Factors Affecting SQL Server’s I/O Handling
	2.1.Logical I/O (Buffer Cache) and the Effect on Physical I/O
	2.1.1. Correlating the Buffer Cache Size with the Database Size

	2.2.Physical I/O and I/O Functions
	2.2.1.Scatter-Gather I/O

	2.3.Asynchronous I/O
	2.3.1. Writing Database Data Pages
	2.3.2.Writing to File Groups
	2.3.3.Automatic Checkpoints
	2.3.4.Reading from Data Files

	2.4.Synchronous I/O
	2.4.1. Writing the Transaction Log

	3.Optimizing NetApp Storage for SQL Server
	3.1.Read-Ahead and Setting of minra
	3.2.FCP or iSCSI Infrastructure Setup
	Files, File Groups, and Disks
	3.3.1.Space Considerations
	3.3.2.Throughput Considerations

	4.Sizing NetApp Storage for SQL Server
	4.1.General Sizing Recommendations
	4.1.1. Space Requirements for System Databases
	4.1.2.User-Defined Databases
	4.1.3.Sizing a Volume for Space Requirements
	4.1.4.Sizing a Volume for Throughput
	4.1.5.Sizing Transaction Logs
	4.1.6.Sizing SnapInfo Used by SnapManager for SQL Server

	4.3.Special Sizing Considerations for MSCS

	5. Ongoing Capacity Planning and Monitoring
	5.1.Basic Set of Counters

	6. Summary
	7.References and Additional Resources

